Up

sparktk.frame.ops.sort module

# vim: set encoding=utf-8

#  Copyright (c) 2016 Intel Corporation 
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#

import sparktk.frame.schema

def sort(self, columns, ascending=True):
    """
    Sort by one or more columns.

    Parameters
    ----------

    :param columns: (str or List[str]) Either a column name, list of column names, or list of tuples where each tuple is a name and an
                    ascending bool value.
    :param ascending: (Optional[bool]) True for ascending (default), or False for descending.

    Sort a frame by column values either ascending or descending.

    Examples
    --------


    Consider the frame:

        >>> frame.inspect()
        [#]  col1  col2
        ==================
        [0]     3  foxtrot
        [1]     1  charlie
        [2]     3  bravo
        [3]     2  echo
        [4]     4  delta
        [5]     3  alpha

    Sort a single column:

        >>> frame.sort('col1')
        [===Job Progress===]
        >>> frame.inspect()
        [#]  col1  col2
        ==================
        [0]     1  charlie
        [1]     2  echo
        [2]     3  foxtrot
        [3]     3  bravo
        [4]     3  alpha
        [5]     4  delta

    Sort a single column descending:

        >>> frame.sort('col2', False)
        [===Job Progress===]
        >>> frame.inspect()
        [#]  col1  col2
        ==================
        [0]     3  foxtrot
        [1]     2  echo
        [2]     4  delta
        [3]     1  charlie
        [4]     3  bravo
        [5]     3  alpha

    Sort multiple columns:

        >>> frame.sort(['col1', 'col2'])
        [===Job Progress===]

        >>> frame.inspect()
        [#]  col1  col2
        ==================
        [0]     1  charlie
        [1]     2  echo
        [2]     3  alpha
        [3]     3  bravo
        [4]     3  foxtrot
        [5]     4  delta


    Sort multiple columns descending:

        >>> frame.sort(['col1', 'col2'], False)
        [===Job Progress===]

        >>> frame.inspect()
        [#]  col1  col2
        ==================
        [0]     4  delta
        [1]     3  foxtrot
        [2]     3  bravo
        [3]     3  alpha
        [4]     2  echo
        [5]     1  charlie

    Sort multiple columns: 'col1' decending and 'col2' ascending:

        >>> frame.sort([ ('col1', False), ('col2', True) ])
        [===Job Progress===]

        >>> frame.inspect()
        [#]  col1  col2
        ==================
        [0]     4  delta
        [1]     3  alpha
        [2]     3  bravo
        [3]     3  foxtrot
        [4]     2  echo
        [5]     1  charlie

    """
    if columns is None:
        raise ValueError("The columns parameter should not be None.")
    elif not isinstance(columns, list):
        columns = [columns]
    if not columns:
        raise ValueError("The columns parameter should not be empty.")
    if self._is_scala:
        scala_sort(self, columns, ascending)
    else:
        column_names = columns              # list of column names
        columns_ascending = ascending       # boolean summarizing if we are sorting ascending or descending

        if isinstance(columns[0], tuple):
            are_all_proper_tuples = all(isinstance(c, tuple) and isinstance(c[0], basestring) and isinstance(c[1], bool) for c in columns)

            if not are_all_proper_tuples:
                raise ValueError("If the columns paramter is a list of tuples, each tuple must have a string (column name)"
                                 "and a bool (True for ascending).")

            column_names = [c[0] for c in columns]  # Grab just the column names from the list of tuples

            # Check ascending booleans in the tuples to see if they're all the same
            are_all_same_ascending = all(c[1] == columns[0][1] for c in columns)

            if are_all_same_ascending:
                columns_ascending = columns[0][1]
        else:
            are_all_same_ascending = True

        if are_all_same_ascending:
            indices = sparktk.frame.schema.get_indices_for_selected_columns(self.schema, column_names)
            self._python.rdd = self.rdd.sortBy(lambda x: tuple([x[index] for index in indices]), ascending=columns_ascending)

        else:
            # If there are different ascending values between columns, then use scala sort
            scala_sort(self, columns, ascending)

def scala_sort(self, columns, ascending):
    if isinstance(columns[0], basestring):
        columns_and_ascending = [(c, ascending) for c in columns]
    else:
        columns_and_ascending = columns
    self._scala.sort(self._tc.jutils.convert.to_scala_list_string_bool_tuple(columns_and_ascending))

Functions

def scala_sort(

self, columns, ascending)

def scala_sort(self, columns, ascending):
    if isinstance(columns[0], basestring):
        columns_and_ascending = [(c, ascending) for c in columns]
    else:
        columns_and_ascending = columns
    self._scala.sort(self._tc.jutils.convert.to_scala_list_string_bool_tuple(columns_and_ascending))

def sort(

self, columns, ascending=True)

Sort by one or more columns.

Parameters:
columns(str or List[str]):Either a column name, list of column names, or list of tuples where each tuple is a name and an ascending bool value.
ascending(Optional[bool]):True for ascending (default), or False for descending.

Sort a frame by column values either ascending or descending.

Examples:

Consider the frame:

>>> frame.inspect()
[#]  col1  col2
==================
[0]     3  foxtrot
[1]     1  charlie
[2]     3  bravo
[3]     2  echo
[4]     4  delta
[5]     3  alpha

Sort a single column:

>>> frame.sort('col1')
[===Job Progress===]
>>> frame.inspect()
[#]  col1  col2
==================
[0]     1  charlie
[1]     2  echo
[2]     3  foxtrot
[3]     3  bravo
[4]     3  alpha
[5]     4  delta

Sort a single column descending:

>>> frame.sort('col2', False)
[===Job Progress===]
>>> frame.inspect()
[#]  col1  col2
==================
[0]     3  foxtrot
[1]     2  echo
[2]     4  delta
[3]     1  charlie
[4]     3  bravo
[5]     3  alpha

Sort multiple columns:

>>> frame.sort(['col1', 'col2'])
[===Job Progress===]

>>> frame.inspect()
[#]  col1  col2
==================
[0]     1  charlie
[1]     2  echo
[2]     3  alpha
[3]     3  bravo
[4]     3  foxtrot
[5]     4  delta

Sort multiple columns descending:

>>> frame.sort(['col1', 'col2'], False)
[===Job Progress===]

>>> frame.inspect()
[#]  col1  col2
==================
[0]     4  delta
[1]     3  foxtrot
[2]     3  bravo
[3]     3  alpha
[4]     2  echo
[5]     1  charlie

Sort multiple columns: 'col1' decending and 'col2' ascending:

>>> frame.sort([ ('col1', False), ('col2', True) ])
[===Job Progress===]

>>> frame.inspect()
[#]  col1  col2
==================
[0]     4  delta
[1]     3  alpha
[2]     3  bravo
[3]     3  foxtrot
[4]     2  echo
[5]     1  charlie
def sort(self, columns, ascending=True):
    """
    Sort by one or more columns.

    Parameters
    ----------

    :param columns: (str or List[str]) Either a column name, list of column names, or list of tuples where each tuple is a name and an
                    ascending bool value.
    :param ascending: (Optional[bool]) True for ascending (default), or False for descending.

    Sort a frame by column values either ascending or descending.

    Examples
    --------


    Consider the frame:

        >>> frame.inspect()
        [#]  col1  col2
        ==================
        [0]     3  foxtrot
        [1]     1  charlie
        [2]     3  bravo
        [3]     2  echo
        [4]     4  delta
        [5]     3  alpha

    Sort a single column:

        >>> frame.sort('col1')
        [===Job Progress===]
        >>> frame.inspect()
        [#]  col1  col2
        ==================
        [0]     1  charlie
        [1]     2  echo
        [2]     3  foxtrot
        [3]     3  bravo
        [4]     3  alpha
        [5]     4  delta

    Sort a single column descending:

        >>> frame.sort('col2', False)
        [===Job Progress===]
        >>> frame.inspect()
        [#]  col1  col2
        ==================
        [0]     3  foxtrot
        [1]     2  echo
        [2]     4  delta
        [3]     1  charlie
        [4]     3  bravo
        [5]     3  alpha

    Sort multiple columns:

        >>> frame.sort(['col1', 'col2'])
        [===Job Progress===]

        >>> frame.inspect()
        [#]  col1  col2
        ==================
        [0]     1  charlie
        [1]     2  echo
        [2]     3  alpha
        [3]     3  bravo
        [4]     3  foxtrot
        [5]     4  delta


    Sort multiple columns descending:

        >>> frame.sort(['col1', 'col2'], False)
        [===Job Progress===]

        >>> frame.inspect()
        [#]  col1  col2
        ==================
        [0]     4  delta
        [1]     3  foxtrot
        [2]     3  bravo
        [3]     3  alpha
        [4]     2  echo
        [5]     1  charlie

    Sort multiple columns: 'col1' decending and 'col2' ascending:

        >>> frame.sort([ ('col1', False), ('col2', True) ])
        [===Job Progress===]

        >>> frame.inspect()
        [#]  col1  col2
        ==================
        [0]     4  delta
        [1]     3  alpha
        [2]     3  bravo
        [3]     3  foxtrot
        [4]     2  echo
        [5]     1  charlie

    """
    if columns is None:
        raise ValueError("The columns parameter should not be None.")
    elif not isinstance(columns, list):
        columns = [columns]
    if not columns:
        raise ValueError("The columns parameter should not be empty.")
    if self._is_scala:
        scala_sort(self, columns, ascending)
    else:
        column_names = columns              # list of column names
        columns_ascending = ascending       # boolean summarizing if we are sorting ascending or descending

        if isinstance(columns[0], tuple):
            are_all_proper_tuples = all(isinstance(c, tuple) and isinstance(c[0], basestring) and isinstance(c[1], bool) for c in columns)

            if not are_all_proper_tuples:
                raise ValueError("If the columns paramter is a list of tuples, each tuple must have a string (column name)"
                                 "and a bool (True for ascending).")

            column_names = [c[0] for c in columns]  # Grab just the column names from the list of tuples

            # Check ascending booleans in the tuples to see if they're all the same
            are_all_same_ascending = all(c[1] == columns[0][1] for c in columns)

            if are_all_same_ascending:
                columns_ascending = columns[0][1]
        else:
            are_all_same_ascending = True

        if are_all_same_ascending:
            indices = sparktk.frame.schema.get_indices_for_selected_columns(self.schema, column_names)
            self._python.rdd = self.rdd.sortBy(lambda x: tuple([x[index] for index in indices]), ascending=columns_ascending)

        else:
            # If there are different ascending values between columns, then use scala sort
            scala_sort(self, columns, ascending)