sparktk.frame.ops.matrix_svd module
# vim: set encoding=utf-8
# Copyright (c) 2016 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
def matrix_svd(self, matrix_column_name):
"""
Compute the Singular Value Decomposition of a matrix
Parameters
----------
:param matrix_column_name: Name of the column to compute the svd on
:return: (Frame) returns the frame with three new columns storing the U matrix, V matrix and Singular Vectors
Calculate the Singular Value Decomposition for each matrix in column 'matrix_column_name'
Examples
--------
>>> from sparktk import dtypes
>>> data = [[1, [[1,2,3,5],[2,3,5,6],[4,6,7,3],[8,9,2,4]]]]
>>> schema = [('id', int),('pixeldata', dtypes.matrix)]
>>> my_frame = tc.frame.create(data, schema)
>>> my_frame.inspect()
[#] id pixeldata
============================
[0] 1 [[ 1. 2. 3. 5.]
[ 2. 3. 5. 6.]
[ 4. 6. 7. 3.]
[ 8. 9. 2. 4.]]
Compute the singular value decomposition for the matrices in 'pixeldata' column of the frame
>>> my_frame.matrix_svd('pixeldata')
Three new columns get added storing the U matrix, V matrix and Singular Vectors
>>> my_frame.inspect()
[#] id pixeldata
============================
[0] 1 [[ 1. 2. 3. 5.]
[ 2. 3. 5. 6.]
[ 4. 6. 7. 3.]
[ 8. 9. 2. 4.]]
[#] U_pixeldata
========================================================
[0] [[-0.29128979 -0.43716238 -0.44530839 0.72507913]
[-0.42474933 -0.55066945 -0.26749936 -0.66692972]
[-0.55099141 -0.16785045 0.79986267 0.16868433]
[-0.65661765 0.69099814 -0.30060644 -0.0317899 ]]
[#] V_pixeldata
========================================================
[0] [[-0.47195872 0.50289367 -0.05244699 -0.72222035]
[-0.60780067 0.40702574 0.11313693 0.67239008]
[-0.44835972 -0.58469285 0.65644993 -0.16180641]
[-0.45476024 -0.48945099 -0.74399115 0.01039344]]
[#] SingularVectors_pixeldata
============================================================
[0] [[ 18.21704938 6.59797925 3.54086993 0.26080987]]
"""
self._scala.matrixSvd(matrix_column_name)
Functions
def matrix_svd(
self, matrix_column_name)
Compute the Singular Value Decomposition of a matrix
Parameters:
matrix_column_name: | Name of the column to compute the svd on |
Returns | (Frame): | returns the frame with three new columns storing the U matrix, V matrix and Singular Vectors |
Calculate the Singular Value Decomposition for each matrix in column 'matrix_column_name'
Examples:
>>> from sparktk import dtypes
>>> data = [[1, [[1,2,3,5],[2,3,5,6],[4,6,7,3],[8,9,2,4]]]]
>>> schema = [('id', int),('pixeldata', dtypes.matrix)]
>>> my_frame = tc.frame.create(data, schema)
>>> my_frame.inspect()
[#] id pixeldata
============================
[0] 1 [[ 1. 2. 3. 5.]
[ 2. 3. 5. 6.]
[ 4. 6. 7. 3.]
[ 8. 9. 2. 4.]]
Compute the singular value decomposition for the matrices in 'pixeldata' column of the frame
>>> my_frame.matrix_svd('pixeldata')
Three new columns get added storing the U matrix, V matrix and Singular Vectors
>>> my_frame.inspect()
[#] id pixeldata
============================
[0] 1 [[ 1. 2. 3. 5.]
[ 2. 3. 5. 6.]
[ 4. 6. 7. 3.]
[ 8. 9. 2. 4.]]
<BLANKLINE>
[#] U_pixeldata
========================================================
[0] [[-0.29128979 -0.43716238 -0.44530839 0.72507913]
[-0.42474933 -0.55066945 -0.26749936 -0.66692972]
[-0.55099141 -0.16785045 0.79986267 0.16868433]
[-0.65661765 0.69099814 -0.30060644 -0.0317899 ]]
<BLANKLINE>
[#] V_pixeldata
========================================================
[0] [[-0.47195872 0.50289367 -0.05244699 -0.72222035]
[-0.60780067 0.40702574 0.11313693 0.67239008]
[-0.44835972 -0.58469285 0.65644993 -0.16180641]
[-0.45476024 -0.48945099 -0.74399115 0.01039344]]
<BLANKLINE>
[#] SingularVectors_pixeldata
============================================================
[0] [[ 18.21704938 6.59797925 3.54086993 0.26080987]]
def matrix_svd(self, matrix_column_name):
"""
Compute the Singular Value Decomposition of a matrix
Parameters
----------
:param matrix_column_name: Name of the column to compute the svd on
:return: (Frame) returns the frame with three new columns storing the U matrix, V matrix and Singular Vectors
Calculate the Singular Value Decomposition for each matrix in column 'matrix_column_name'
Examples
--------
>>> from sparktk import dtypes
>>> data = [[1, [[1,2,3,5],[2,3,5,6],[4,6,7,3],[8,9,2,4]]]]
>>> schema = [('id', int),('pixeldata', dtypes.matrix)]
>>> my_frame = tc.frame.create(data, schema)
>>> my_frame.inspect()
[#] id pixeldata
============================
[0] 1 [[ 1. 2. 3. 5.]
[ 2. 3. 5. 6.]
[ 4. 6. 7. 3.]
[ 8. 9. 2. 4.]]
Compute the singular value decomposition for the matrices in 'pixeldata' column of the frame
>>> my_frame.matrix_svd('pixeldata')
Three new columns get added storing the U matrix, V matrix and Singular Vectors
>>> my_frame.inspect()
[#] id pixeldata
============================
[0] 1 [[ 1. 2. 3. 5.]
[ 2. 3. 5. 6.]
[ 4. 6. 7. 3.]
[ 8. 9. 2. 4.]]
[#] U_pixeldata
========================================================
[0] [[-0.29128979 -0.43716238 -0.44530839 0.72507913]
[-0.42474933 -0.55066945 -0.26749936 -0.66692972]
[-0.55099141 -0.16785045 0.79986267 0.16868433]
[-0.65661765 0.69099814 -0.30060644 -0.0317899 ]]
[#] V_pixeldata
========================================================
[0] [[-0.47195872 0.50289367 -0.05244699 -0.72222035]
[-0.60780067 0.40702574 0.11313693 0.67239008]
[-0.44835972 -0.58469285 0.65644993 -0.16180641]
[-0.45476024 -0.48945099 -0.74399115 0.01039344]]
[#] SingularVectors_pixeldata
============================================================
[0] [[ 18.21704938 6.59797925 3.54086993 0.26080987]]
"""
self._scala.matrixSvd(matrix_column_name)