Commands model:lda/train¶
[BETA] Creates Latent Dirichlet Allocation model
POST /v1/commands/¶
GET /v1/commands/:id¶
Request¶
Route
POST /v1/commands/
Body
name: | model:lda/train |
---|---|
arguments: | model : <bound method AtkEntityType.__name__ of <trustedanalytics.rest.jsonschema.AtkEntityType object at 0x7f9e68702090>>
frame : <bound method AtkEntityType.__name__ of <trustedanalytics.rest.jsonschema.AtkEntityType object at 0x7f9e686f3fd0>>
document_column_name : unicode
word_column_name : unicode
word_count_column_name : unicode
max_iterations : int32 (default=None)
alpha : float32 (default=None)
beta : float32 (default=None)
convergence_threshold : float32 (default=None)
evaluate_cost : bool (default=None)
num_topics : int32 (default=None)
|
Headers
Authorization: test_api_key_1
Content-type: application/json
Description
See the discussion about Latent Dirichlet Allocation at Wikipedia.
Response¶
Status
200 OK
Body
Returns information about the command. See the Response Body for Get Command here below. It is the same.
GET /v1/commands/:id¶
Request¶
Route
GET /v1/commands/18
Body
(None)
Headers
Authorization: test_api_key_1
Content-type: application/json
Response¶
Status
200 OK
Body
dict
The data returned is composed of multiple components:
Frame : topics_given_docConditional probabilities of topic given document.Frame : word_given_topicsConditional probabilities of word given topic.Frame : topics_given_wordConditional probabilities of topic given word.str : reportThe configuration and learning curve report for Latent DirichletAllocation as a multiple line str.