Commands model:k_means/train¶
[BETA] Creates k-means model from trained frame.
POST /v1/commands/¶
GET /v1/commands/:id¶
Request¶
Route
POST /v1/commands/
Body
name: | model:k_means/train |
---|---|
arguments: | model : <bound method AtkEntityType.__name__ of <trustedanalytics.rest.jsonschema.AtkEntityType object at 0x7f9e68702090>>
frame : <bound method AtkEntityType.__name__ of <trustedanalytics.rest.jsonschema.AtkEntityType object at 0x7f9e686f3fd0>>
observation_columns : list
column_scalings : list
k : int32 (default=None)
max_iterations : int32 (default=None)
epsilon : float64 (default=None)
initialization_mode : unicode (default=None)
|
Headers
Authorization: test_api_key_1
Content-type: application/json
Description
Upon training the ‘k’ cluster centers are computed.
Response¶
Status
200 OK
Body
Returns information about the command. See the Response Body for Get Command here below. It is the same.
GET /v1/commands/:id¶
Request¶
Route
GET /v1/commands/18
Body
(None)
Headers
Authorization: test_api_key_1
Content-type: application/json
Response¶
Status
200 OK
Body
dict
The data returned is composed of multiple components:
dict : cluster_sizeCluster size.int : ClusterIdNumber of elements in the cluster ‘ClusterId’.double : within_set_sum_of_squared_errorSum of squared error for the model.