LogisticRegressionModel test¶
-
test
(self, frame, label_column, observation_columns=None)¶ [ALPHA] Predict test frame labels using trained logistic regression model, and show metrics.
Parameters: frame : <bound method AtkEntityType.__name__ of <trustedanalytics.rest.jsonschema.AtkEntityType object at 0x7f9e686f3fd0>>
Frame whose labels are to be predicted.
label_column : unicode
Column containing the actual label for each observation.
observation_columns : list (default=None)
Column(s) containing the observations whose labels are to be predicted and tested. Default is to test over the columns the SVM model was trained on.
Returns: : dict
An object with binary classification metrics. The data returned is composed of multiple components:
double : accuracytable : confusion_matrixdouble : f_measuredouble : precisiondouble : recallPredict the labels for a test frame and run classification metrics on predicted and target labels.
Examples
>>> my_model = ta.LogisticRegressionModel(name='LogReg') >>> my_model.train(train_frame, 'name_of_observation_column', 'name_of_label_column') >>> metrics = my_model.test(test_frame, 'name_of_label_column','name_of_observation_column') >>> metrics.f_measure 0.66666666666666663 >>> metrics.recall 0.5 >>> metrics.accuracy 0.75 >>> metrics.precision 1.0 >>> metrics.confusion_matrix Predicted _pos_ _neg__ Actual pos | 1 1 neg | 0 2