LinearRegressionModel train¶
-
train
(self, frame, label_column, observation_columns, intercept=None, num_iterations=None, step_size=None, reg_type=None, reg_param=None, mini_batch_fraction=None)¶ [ALPHA] Build linear regression model.
Parameters: frame : <bound method AtkEntityType.__name__ of <trustedanalytics.rest.jsonschema.AtkEntityType object at 0x7f9e686f3fd0>>
A frame to train the model on.
label_column : unicode
Column name containing the label for each observation.
observation_columns : list
Column(s) containing the observations.
intercept : bool (default=None)
The algorithm adds an intercept. Default is true.
num_iterations : int32 (default=None)
Number of iterations. Default is 100.
step_size : int32 (default=None)
Step size for optimizer. Default is 1.0.
reg_type : unicode (default=None)
Regularization L1 or L2. Default is L2.
reg_param : float64 (default=None)
Regularization parameter. Default is 0.01.
mini_batch_fraction : float64 (default=None)
Mini batch fraction parameter. Default is 1.0.
Returns: : _Unit
Creating a Linear Regression Model using the observation column and label column of the train frame.
Examples
>>> my_model = ta.LinearRegressionModel(name='LinReg') >>> my_model.train(train_frame, 'name_of_label_column',['name_of_observation_column(s)'],false, 50, 1.0, "L1", 0.02, 1.0)