Graphs TitanGraph¶
-
class
TitanGraph
¶ - Proxy to a graph in Titan, supports Gremlin query
Attributes
name Set or get the name of the graph object. status Current graph life cycle status. Methods
__init__(self[, name, _info]) Initialize the graph. __init__(self, entity) <Missing Doc> __init__(self, entity) <Missing Doc> annotate_degrees(self, output_property_name[, degree_option, ...]) Make new graph with degrees. annotate_weighted_degrees(self, output_property_name[, ...]) Calculates the weighted degree of each vertex with respect to an (optional) set of labels. clustering_coefficient(self[, output_property_name, ...]) Coefficient of graph with respect to labels. copy(self[, name]) Make a copy of the current graph. export_to_graph(self) Export from TitanGraph to Graph. graph_clustering(self, edge_distance) Performs graph clustering over an initial titan graph. graphx_connected_components(self, output_property) Implements the connected components computation on a graph by invoking graphx api. graphx_pagerank(self, output_property[, input_edge_labels, ...]) Determine which vertices are the most important. graphx_triangle_count(self, output_property[, input_edge_labels]) Number of triangles among vertices of current graph. ml.belief_propagation(self, prior_property, posterior_property) Classification on sparse data using Belief Propagation. query.gremlin(self, gremlin) Executes a Gremlin query. vertex_sample(self, size, sample_type[, seed]) Make subgraph from vertex sampling.
-
__init__
(self, name=None)¶ Initialize the graph.
Parameters: name : (default=None)