Frame covariance_matrix¶
-
covariance_matrix
(self, data_column_names, matrix_name=None)¶ Calculate covariance matrix for two or more columns.
Parameters: data_column_names : list
The names of the column from which to compute the matrix. Names should refer to a single column of type vector, or two or more columns of numeric scalars.
matrix_name : unicode (default=None)
The name of the new matrix.
Returns: : <bound method AtkEntityType.__name__ of <trustedanalytics.rest.jsonschema.AtkEntityType object at 0x7f9e686f3fd0>>
A matrix with the covariance values for the columns.
This function applies only to columns containing numerical data.
Examples
Consider Frame my_frame1, which computes the covariance matrix for three numeric columns:
>>> my_frame1.inspect() col_0:int64 col_1:int64 col_3:float64 \--------------------------------------------\ 1 4 33.4 2 5 43.7 3 6 20.1 >>> cov_matrix = my_frame1.covariance_matrix(['col_0', 'col_1', 'col_2']) >>> cov_matrix.inspect() col_0:float64 col_1:float64 col_3:float64 \------------------------------------------------\ 1.00 1.00 -6.65 1.00 1.00 -6.65 -6.65 -6.65 139.99
Consider Frame my_frame2, which computes the covariance matrix for a single vector column:
>>> my_frame2.inspect() State:unicode Population_HISTOGRAM:vector \-------------------------------------------------------\ Louisiana [0.0, 1.0, 0.0, 0.0] Georgia [0.0, 1.0, 0.0, 0.0] Texas [0.0, 0.54, 0.46, 0.0] Florida [0.0, 0.83, 0.17, 0.0] >>> cov_matrix = my_frame2.covariance_matrix(['Population_HISTOGRAM']) >>> cov_matrix.inspect() Population_HISTOGRAM:vector \-------------------------------------\ [0, 0.00000000, 0.00000000, 0] [0, 0.04709167, -0.04709167, 0] [0, -0.04709167, 0.04709167, 0] [0, 0.00000000, 0.00000000, 0]