LinearRegressionModel train¶
-
train
(self, frame, value_column, observation_columns, elastic_net_parameter=0.0, fit_intercept=True, max_iterations=100, reg_param=0.0, standardization=True, tolerance=1e-06)¶ Build linear regression model.
Parameters: frame : Frame
A frame to train the model on
value_column : unicode
Column name containing the value for each observation.
observation_columns : list
List of column(s) containing the observations.
elastic_net_parameter : float64 (default=0.0)
Parameter for the ElasticNet mixing. Default is 0.0
fit_intercept : bool (default=True)
Parameter for whether to fit an intercept term. Default is true
max_iterations : int32 (default=100)
Parameter for maximum number of iterations. Default is 100
reg_param : float64 (default=0.0)
Parameter for regularization. Default is 0.0
standardization : bool (default=True)
Parameter for whether to standardize the training features before fitting the model. Default is true
tolerance : float64 (default=1e-06)
Parameter for the convergence tolerance for iterative algorithms. Default is 1E-6
Returns: : dict
Trained linear regression model
Creating a LinearRegression Model using the observation column and target column of the train frame
Examples
See here for examples.