Models CoxPhModel¶
-
class
CoxPhModel
¶ Entity CoxPhModel
Attributes
last_read_date Read-only property - Last time this model’s data was accessed. name Set or get the name of the model object. status Read-only property - Current model life cycle status. Methods
__init__(self[, name, _info]) Create a ‘new’ instance of a Multivariate Cox Proportional Hazards model predict(self, predict_frame[, comparison_frame, feature_columns]) [ALPHA] <Missing Doc> train(self, frame, time_column, covariate_columns, censor_column[, ...]) [ALPHA] Build Cox proportional hazard model.
-
__init__
(self, name=None)¶ Create a ‘new’ instance of a Multivariate Cox Proportional Hazards model
Parameters: name : unicode (default=None)
User supplied name.
Returns: : Model
Examples
Consider the following model trained and tested on the sample data set in frame ‘frame’.
Consider the following frame containing three columns.
>>> frame.inspect() [#] time bmi censor ========================= [0] 6.0 31.4 1.0 [1] 98.0 21.5 1.0 [2] 189.0 27.1 1.0 [3] 374.0 22.7 1.0 [4] 1002.0 35.7 1.0 [5] 1205.0 30.7 1.0 [6] 2065.0 26.5 1.0 [7] 2201.0 28.3 1.0 [8] 2421.0 27.9 1.0
>>> model = ta.CoxPhModel() [===Job Progress===] >>> train_output = model.train(frame,time_column='time',covariate_columns=['bmi'],censor_column='censor',convergence_tolerance=0.01,max_steps=10) [===Job Progress===] >>> train_output {u'beta': [-0.03351902788328831], u'mean': [27.977777777777778]} >>> train_output['beta'] [-0.03351902788328831] >>> predict_output = model.predict(frame) [===Job Progress===] >>> predict_output.inspect() [#] time bmi censor hazard_ratio ========================================= [0] 6.0 31.4 1.0 0.891625068026 [1] 98.0 21.5 1.0 1.2425041437 [2] 189.0 27.1 1.0 1.02985936884 [3] 374.0 22.7 1.0 1.1935188738 [4] 1002.0 35.7 1.0 0.771945457787 [5] 1205.0 30.7 1.0 0.912792914749 [6] 2065.0 26.5 1.0 1.05078097618 [7] 2201.0 28.3 1.0 0.989257541146 [8] 2421.0 27.9 1.0 1.00261043677