VertexFrame daal_covariance_matrix¶
-
daal_covariance_matrix
(self, data_column_names, matrix_name=None)¶ [BETA] Calculate covariance matrix for two or more columns.
Parameters: data_column_names : list
The names of the column from which to compute the matrix. Names should refer to a single column of type vector, or two or more columns of numeric scalars.
matrix_name : unicode (default=None)
The name of the new matrix.
Returns: : Frame
A matrix with the covariance values for the columns.
Uses Intel Data Analytics and Acceleration Library (DAAL) to compute covariance matrix.
Notes
This function applies only to columns containing numerical data.
Examples
Consider Frame my_frame, which contains the data
>>> my_frame.inspect() [#] idnum x1 x2 x3 x4 =============================== [0] 0 1.0 4.0 0.0 -1.0 [1] 1 2.0 3.0 0.0 -1.0 [2] 2 3.0 2.0 1.0 -1.0 [3] 3 4.0 1.0 2.0 -1.0 [4] 4 5.0 0.0 2.0 -1.0
my_frame.daal_covariance_matrix computes the covariance on each pair of columns in the user-provided list.
>>> cov_matrix = my_frame.daal_covariance_matrix(my_frame.column_names) [===Job Progress===]
The resulting table (specifying all columns) is:
>>> cov_matrix.inspect() [#] idnum x1 x2 x3 x4 ================================= [0] 2.5 2.5 -2.5 1.5 0.0 [1] 2.5 2.5 -2.5 1.5 0.0 [2] -2.5 -2.5 2.5 -1.5 0.0 [3] 1.5 1.5 -1.5 1.0 0.0 [4] 0.0 0.0 0.0 0.0 0.0