Frame timeseries_breusch_pagan_test¶
-
timeseries_breusch_pagan_test
(self, residuals, factors)¶ Breusch-Pagan statistics test
Parameters: residuals : unicode
Name of the column that contains residual values
factors : list
Name of the column(s) that contain factors
Returns: : dict
Performs the Breusch-Pagan test for heteroskedasticity.
Examples
Consider the following frame:
>>> frame.inspect() [#] AT V AP RH PE ============================================================================== [0] 8.34000015259 40.7700004578 1010.84002686 90.0100021362 480.480010986 [1] 23.6399993896 58.4900016785 1011.40002441 74.1999969482 445.75 [2] 29.7399997711 56.9000015259 1007.15002441 41.9099998474 438.760009766 [3] 19.0699996948 49.6899986267 1007.2199707 76.7900009155 453.089996338 [4] 11.8000001907 40.6599998474 1017.13000488 97.1999969482 464.429992676 [5] 13.970000267 39.1599998474 1016.04998779 84.5999984741 470.959991455 [6] 22.1000003815 71.2900009155 1008.20001221 75.3799972534 442.350006104 [7] 14.470000267 41.7599983215 1021.97998047 78.4100036621 464.0 [8] 31.25 69.5100021362 1010.25 36.8300018311 428.769989014 [9] 6.76999998093 38.1800003052 1017.79998779 81.1299972534 484.299987793
Calculate the Bruesh-Pagan test statistic where the “AT” column contains residual values and the other columns are factors:
>>> result = frame.timeseries_breusch_pagan_test("AT",["V","AP","RH","PE"]) [===Job Progress===]
The result contains the test statistic and p-value:
>>> result["test_stat"] 22.674159327676357
>>> result["p_value"] 0.00014708935047758054